home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- * File of the REAL Level-3 BLAS.
- * ==========================================
- *
- * SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
- * $ BETA, C, LDC )
- *
- * SUBROUTINE SSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
- * $ BETA, C, LDC )
- *
- * SUBROUTINE SSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA,
- * $ BETA, C, LDC )
- *
- * SUBROUTINE SSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,
- * $ BETA, C, LDC )
- *
- * SUBROUTINE STRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
- * $ B, LDB )
- *
- * SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
- * $ B, LDB )
- *
- * See:
- *
- * Dongarra J. J., Du Croz J. J., Duff I. and Hammarling S.
- * A set of Level 3 Basic Linear Algebra Subprograms. Technical
- * Memorandum No.88 (Revision 1), Mathematics and Computer Science
- * Division, Argonne National Laboratory, 9700 South Cass Avenue,
- * Argonne, Illinois 60439.
- *
- *
- ************************************************************************
- *
- SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
- $ BETA, C, LDC )
- * .. Scalar Arguments ..
- CHARACTER*1 TRANSA, TRANSB
- INTEGER M, N, K, LDA, LDB, LDC
- REAL ALPHA, BETA
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), C( LDC, * )
- * ..
- *
- * Purpose
- * =======
- *
- * SGEMM performs one of the matrix-matrix operations
- *
- * C := alpha*op( A )*op( B ) + beta*C,
- *
- * where op( X ) is one of
- *
- * op( X ) = X or op( X ) = X',
- *
- * alpha and beta are scalars, and A, B and C are matrices, with op( A )
- * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
- *
- * Parameters
- * ==========
- *
- * TRANSA - CHARACTER*1.
- * On entry, TRANSA specifies the form of op( A ) to be used in
- * the matrix multiplication as follows:
- *
- * TRANSA = 'N' or 'n', op( A ) = A.
- *
- * TRANSA = 'T' or 't', op( A ) = A'.
- *
- * TRANSA = 'C' or 'c', op( A ) = A'.
- *
- * Unchanged on exit.
- *
- * TRANSB - CHARACTER*1.
- * On entry, TRANSB specifies the form of op( B ) to be used in
- * the matrix multiplication as follows:
- *
- * TRANSB = 'N' or 'n', op( B ) = B.
- *
- * TRANSB = 'T' or 't', op( B ) = B'.
- *
- * TRANSB = 'C' or 'c', op( B ) = B'.
- *
- * Unchanged on exit.
- *
- * M - INTEGER.
- * On entry, M specifies the number of rows of the matrix
- * op( A ) and of the matrix C. M must be at least zero.
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the number of columns of the matrix
- * op( B ) and the number of columns of the matrix C. N must be
- * at least zero.
- * Unchanged on exit.
- *
- * K - INTEGER.
- * On entry, K specifies the number of columns of the matrix
- * op( A ) and the number of rows of the matrix op( B ). K must
- * be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - REAL .
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * A - REAL array of DIMENSION ( LDA, ka ), where ka is
- * k when TRANSA = 'N' or 'n', and is m otherwise.
- * Before entry with TRANSA = 'N' or 'n', the leading m by k
- * part of the array A must contain the matrix A, otherwise
- * the leading k by m part of the array A must contain the
- * matrix A.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. When TRANSA = 'N' or 'n' then
- * LDA must be at least max( 1, m ), otherwise LDA must be at
- * least max( 1, k ).
- * Unchanged on exit.
- *
- * B - REAL array of DIMENSION ( LDB, kb ), where kb is
- * n when TRANSB = 'N' or 'n', and is k otherwise.
- * Before entry with TRANSB = 'N' or 'n', the leading k by n
- * part of the array B must contain the matrix B, otherwise
- * the leading n by k part of the array B must contain the
- * matrix B.
- * Unchanged on exit.
- *
- * LDB - INTEGER.
- * On entry, LDB specifies the first dimension of B as declared
- * in the calling (sub) program. When TRANSB = 'N' or 'n' then
- * LDB must be at least max( 1, k ), otherwise LDB must be at
- * least max( 1, n ).
- * Unchanged on exit.
- *
- * BETA - REAL .
- * On entry, BETA specifies the scalar beta. When BETA is
- * supplied as zero then C need not be set on input.
- * Unchanged on exit.
- *
- * C - REAL array of DIMENSION ( LDC, n ).
- * Before entry, the leading m by n part of the array C must
- * contain the matrix C, except when beta is zero, in which
- * case C need not be set on entry.
- * On exit, the array C is overwritten by the m by n matrix
- * ( alpha*op( A )*op( B ) + beta*C ).
- *
- * LDC - INTEGER.
- * On entry, LDC specifies the first dimension of C as declared
- * in the calling (sub) program. LDC must be at least
- * max( 1, m ).
- * Unchanged on exit.
- *
- *
- * Level 3 Blas routine.
- *
- * -- Written on 8-February-1989.
- * Jack Dongarra, Argonne National Laboratory.
- * Iain Duff, AERE Harwell.
- * Jeremy Du Croz, Numerical Algorithms Group Ltd.
- * Sven Hammarling, Numerical Algorithms Group Ltd.
- *
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * .. Local Scalars ..
- LOGICAL NOTA, NOTB
- INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB
- REAL TEMP
- * .. Parameters ..
- REAL ONE , ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Executable Statements ..
- *
- * Set NOTA and NOTB as true if A and B respectively are not
- * transposed and set NROWA, NCOLA and NROWB as the number of rows
- * and columns of A and the number of rows of B respectively.
- *
- NOTA = LSAME( TRANSA, 'N' )
- NOTB = LSAME( TRANSB, 'N' )
- IF( NOTA )THEN
- NROWA = M
- NCOLA = K
- ELSE
- NROWA = K
- NCOLA = M
- END IF
- IF( NOTB )THEN
- NROWB = K
- ELSE
- NROWB = N
- END IF
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( ( .NOT.NOTA ).AND.
- $ ( .NOT.LSAME( TRANSA, 'C' ) ).AND.
- $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN
- INFO = 1
- ELSE IF( ( .NOT.NOTB ).AND.
- $ ( .NOT.LSAME( TRANSB, 'C' ) ).AND.
- $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN
- INFO = 2
- ELSE IF( M .LT.0 )THEN
- INFO = 3
- ELSE IF( N .LT.0 )THEN
- INFO = 4
- ELSE IF( K .LT.0 )THEN
- INFO = 5
- ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
- INFO = 8
- ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
- INFO = 10
- ELSE IF( LDC.LT.MAX( 1, M ) )THEN
- INFO = 13
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'SGEMM ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
- $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * And if alpha.eq.zero.
- *
- IF( ALPHA.EQ.ZERO )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 20, J = 1, N
- DO 10, I = 1, M
- C( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- DO 30, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- RETURN
- END IF
- *
- * Start the operations.
- *
- IF( NOTB )THEN
- IF( NOTA )THEN
- *
- * Form C := alpha*A*B + beta*C.
- *
- DO 90, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 50, I = 1, M
- C( I, J ) = ZERO
- 50 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 60, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 60 CONTINUE
- END IF
- DO 80, L = 1, K
- IF( B( L, J ).NE.ZERO )THEN
- TEMP = ALPHA*B( L, J )
- DO 70, I = 1, M
- C( I, J ) = C( I, J ) + TEMP*A( I, L )
- 70 CONTINUE
- END IF
- 80 CONTINUE
- 90 CONTINUE
- ELSE
- *
- * Form C := alpha*A'*B + beta*C
- *
- DO 120, J = 1, N
- DO 110, I = 1, M
- TEMP = ZERO
- DO 100, L = 1, K
- TEMP = TEMP + A( L, I )*B( L, J )
- 100 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 110 CONTINUE
- 120 CONTINUE
- END IF
- ELSE
- IF( NOTA )THEN
- *
- * Form C := alpha*A*B' + beta*C
- *
- DO 170, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 130, I = 1, M
- C( I, J ) = ZERO
- 130 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 140, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 140 CONTINUE
- END IF
- DO 160, L = 1, K
- IF( B( J, L ).NE.ZERO )THEN
- TEMP = ALPHA*B( J, L )
- DO 150, I = 1, M
- C( I, J ) = C( I, J ) + TEMP*A( I, L )
- 150 CONTINUE
- END IF
- 160 CONTINUE
- 170 CONTINUE
- ELSE
- *
- * Form C := alpha*A'*B' + beta*C
- *
- DO 200, J = 1, N
- DO 190, I = 1, M
- TEMP = ZERO
- DO 180, L = 1, K
- TEMP = TEMP + A( L, I )*B( J, L )
- 180 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 190 CONTINUE
- 200 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of SGEMM .
- *
- END
-